Application of the Cubed-sphere Grid to Tilted Black-hole Accretion Disks

نویسندگان

  • P. Chris Fragile
  • Christopher C. Lindner
  • Peter Anninos
  • Jay D. Salmonson
چکیده

In recent work we presented the first results of global general relativistic magnetohydrodynamic (GRMHD) simulations of tilted (or misaligned) accretion disks around rotating black holes. The simulated tilted disks showed dramatic differences from comparable untilted disks, such as asymmetrical accretion onto the hole through opposing “plunging streams” and global precession of the disk powered by a torque provided by the black hole. However, those simulations used a traditional spherical-polar grid that was purposefully underresolved along the pole, which prevented us from assessing the behavior of any jets that may have been associated with the tilted disks. To address this shortcoming we have added a block-structured “cubed-sphere” grid option to the Cosmos++ GRMHD code, which will allow us to simultaneously resolve the disk and polar regions. Here we present our implementation of this grid and the results of a small suite of validation tests intended to demonstrate that the new grid performs as expected. The most important test in this work is a comparison of identical tilted disks, one evolved using our spherical-polar grid and the other with the cubed-sphere grid. We also demonstrate an interesting dependence of the early-time evolution of our disks on their orientation with respect to the grid alignment. This dependence arises from the differing treatment of current sheets within the disks, especially whether they are aligned with symmetry planes of the grid or not. Subject headings: accretion, accretion disks — black hole physics — methods: numerical — MHD — relativity

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relativistic MHD Simulation of a Tilted Black - Hole Accretion Disk

This paper presents a continuation of our efforts to numerically study accretion disks that are misaligned (tilted) with respect to the rotation axis of a Kerr black hole. Here we present results of a global numerical simulation which fully incorporates the effects of the black hole spacetime as well as magnetorotational turbulence that is the primary source of angular momentum transport in the...

متن کامل

Tilted Thick-disk Accretion onto a Kerr Black Hole

We present the first results from fully general relativistic numerical studies of thick-disk accretion onto a rapidly-rotating (Kerr) black hole with a spin axis that is tilted (not aligned) with the angular momentum vector of the disk. We initialize the problem with the solution for an aligned, constant angular momentum, accreting thick disk around a black hole with spin a/M = J/M = +0.9 (prog...

متن کامل

ar X iv : a st ro - p h / 04 03 35 6 v 2 7 J an 2 00 5 Hydrodynamic Simulations of Tilted Thick - Disk Accretion onto a Kerr Black Hole

We present results from fully general relativistic three-dimensional numerical studies of thickdisk accretion onto a rapidly-rotating (Kerr) black hole with a spin axis that is tilted (not aligned) with the angular momentum vector of the disk. We initialize the problem with the solution for an aligned, constant angular momentum, accreting thick disk, which is then allowed to respond to the Lens...

متن کامل

Calculation of the relativistic bulk tensor and shear tensor of relativistic accretion flows in the Kerr metric.

In this paper, we calculate the relativistic bulk tensor and shear tensor of the relativistic accretion ows in the Kerr metric, overall and without any approximation. We obtain the relations of all components of the relativistic bulk and shear tensor in terms of components of four-velocity and its derivatives, Christoffel symbols and metric components in the BLF. Then, these components are deri...

متن کامل

A Simplified Solution for Advection Dominated Accretion Flows with Outflow

The existence of outflow in the advection dominated accretion flows has been confirmed by both numerical simulations and observations. The outow models for ADAF have been investigated by several groups with a simple self similar solution. But this solution is inaccurate at the inner regions and can not explain the emitted spectrum of the flow; so, it is necessary to obtain a global solution for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008